Enhanced Activation Checkpointing

Activation checkpointing is a technique used to reduce GPU memory usage during training. This is done by avoiding the need to store intermediate activation tensors during the forward pass. Instead, the forward pass is recomputed by keeping track of the original input during the backward pass. There is a slight increase in computation cost (about 33%) but this reduces the need to store large activation tensors which allows us to increase the batch size and thereby the net throughput of the model.

Activation checkpointing is implemented by overriding torch.autograd.Function. In the forward function which handles the forward pass of the module, using no_grad, we can prevent the creation of the forward graph and materialization of intermediate activation tensors for a long period of time (i.e till the backward pass). Instead, during the backward pass, the forward pass is executed again followed by the backward pass. The inputs to the forward pass are saved using a context object that is then accessed in the backward pass to retrieve the original inputs. We also save the Random Number Generator(RNG) state for the forward and backward passes as required for Dropout layers.

The above functionality is already implemented as part of the torch.utils.checkpoint.checkpoint_wrapper API whereby different modules in the forward pass can be wrapped. The wrapper in FairScale offers functionality beyond that provided by the PyTorch API specifically you can use fairscale.nn.checkpoint.checkpoint_wrapper to wrap a nn.Module, handle kwargs in the forward pass, offload intermediate activations to the CPU and handle non-tensor outputs returned from the forward function.

Best practices for fairscale.nn.checkpoint.checkpoint_wrapper

1. Memory savings depends entirely on the model and the segmentation of checkpoint wrapping. Each backprop consists of several mini-forward and backprop passes. The gain is entirely dependent on the memory footprint of the layer’s activations.

2. When using BatchNormalization you may need to freeze the calculation of statistics since we run the forward pass twice.

3. Ensure that the input tensor’s requires_grad field is set to True. In order to trigger the backward function, the output needs to have this field set. By setting it on the input tensor we ensure that this is propagated to the output and the backward function is triggered.

Read the Docs v: latest
On Read the Docs
Project Home

Free document hosting provided by Read the Docs.